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ABSTRACT

Batching is a commonly used method for calcuLating confidence in-

tervals on the mean of a sequence of correlated observations arising

from a simulation experiment. Several recent papers have considered the

effect of using too many batches. The use of too many batches fails to

satisfy assumptions of normaLity and/or independence, resulting in in-

correct probabilities of the confidence interval covering the mean.

...... --)This paper considers the effects of using fewer batches than are

necessary to satisfy normality and independence assumptions. Using too

few batches results in 1) correct probability of covering the mean, 2)

an increase in expected half Length, 3) an increase in the standard de-

viation of the half Length, and 4) an increase in the probability of

covering incorrect values of the mean (analogous to Type II error in hy-I]
pothesis testing). These effects, quantified here, are shown to be

small when at Least eight to ten batches are used, with Least effect on

confidence intervals having Low confidence values. With the effects of

using too few batches quantified, a simulation practitioner can make the

trade-off between the ease of using very few batches with known indepen-

* dence and normality versus using a batching algorithm to squeeze some

remaining information from the data. For researchers developing batch-

"* ing algorithms, the results are useful in selecting initial batch sizes.

The results may also be useful in the context of using independent re-

plications to establish confidence intervals on the mean.
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FinaLLy, some criteria and a procedure are suggested for Monte Car-

Lo comparison of confidence interval procedures. These suggestions are

not restricted to batch mean algorithms.
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1. INTRODUCTION

The determination of confidence intervaLs on the mean of a process

arising from simuLation experiments has been a problem of Long standing

interest for computer simulation practitioners and researchers. Five

approaches have evolved: independent replications, batching, regenera-

tion, autoregressive representation, and spectral analysis; as dis-

cussed, for example, in Fishman E3], Kleijnen [43 and Law and Kelton (8,

93. We discuss only the first two here, with emphasis on batching.

Consider observations XlX 2,...,X n from a simulation experiment.

We assume that the output is a covariance stationary process; i.e., all

initial transient effects have been removed. Let P denote the process

mean, and Let Rh denote the h Lag covariance E(X.-')(Xi+h-)). We as-

sume that Rh < Rh+j for j = 1,2,.... The variance of the process is RO,

also denoted in this paper as 02. The h Lag autocorreLations are

Ph Rh/Ro. The point estimator of P considered here is the sample meann

= Z X /n, which has expected value ECr)=, and variance V(X-cO2/n,
t-1 n

where c = 1 + 2 z Cl-(h/n))Ph is the number of correlated observations
h1l.

containing the same information as one independent observation.

Batching, discussed as early as 1963 by Conway (1, is a conceptu-

aLly straightforward method for computing confidence intervals on P by

transforming correlated observations into fewer (aLmost) independent and

(aLmost) normaLLy distributed observations. Define the k batch means
im

Xz X /m for lu1,2,...,k; where m is the batch size n/k.j-(i-1)m+1

V W,-
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We assume either that the problem of n/k not being integer is insignifi-

cant or that n/k is integer. The mean of each batch mean is E(ri}=p and

the sample variance is S2=( z 3 - kY2)/Ck-1). If k is chosen smaLL
i=1

enough that the dependence between the batch means and the nonnormality
of the batch means are negLigibLe, then S2/k is an unbiased estimator of

k

Vni and a valid (1-)100 confidence interval on P is Y + Hk. Here

Hk z ta/2,k-lSk/V l is the half length.of the confidence intervaL, with

tal2,k.._1 denoting the 1-(*/Z) quantiLe of the t distribution with k-i

degrees of freedom.

The primary question facing both practitioners and researchers is

the selection of the appropriate number of batches k. If the only goal

were to have a confidence interval which has a probability of 1-a of

covering the mean, then k=2 would always be optimaL, since the two

batches would each contain the Longest possible number of observations

(aLLowing the central Limit theorem to create normality) and would tend

to be Less correlated (since the observations in the batches are farther

apart), thereby best satisfying normality and independence assumptions.

However, other measures of goodness are important. ProbabLy the most

used criterion, other than probability of coverage, is the expected haLf

Length of the confidence intervaL, E{Hk). The Loss of information which

occurs with the extreme batching associated with k=2 causes EfHk) to be

much Larger than if more batches are used, as seen in Section 2. In

generaL, the more batches used, the Less information Lost and the short-

er the expected half Length. Thus there is a tradeoff between expected

Length and coverage which makes the selection of number of batches dif-

ficuLt.
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We examine here the penalty of using fewer batches than are neces-

sary to satisfy normality and independence assumptions. When k is

smaller than necessary, normality and independence still hold, but the

Loss of information causes deteriorating performance of the confidence

intervals. In addition to measuring this deterioration of the perfor-

mance by the probability of covering P and the expected half Length

ECHk), two other measures are suggested here: standard deviation of the

half Length, VV{Hk), and the probability 00w1) of covering points

11 0 P. The variance of the half Length is important since a confidence

interval procedure with high variance gives false signals as to the ac-

curacy of the estimate on a Large fraction of the simulation runs. The

probability of covering points which are not the true mean is analogous

to type II error in hypothesis testing -- the Lower the probability the

better the procedure. Curves analogous to operating characteristic

curves are the subject of Section 3. Section 2 gives properties of the

half Length Hk. Section 4 discusses implications of the results of Sec-

tions 2 and 3 for both practitioners and researchers. Section 5 sug-

gests that the probabilities of coverage be used to compare confidence

interval procedures, analogous to comparing alternative tests of hy-

pothesis with operating characteristic curves.

2. PROPERTIES OF THE HALF LENGTH

To discuss the effects of too few batches, we need to first estab-

lish a base point for comparison. Let k* and m* denote the number of

batches and batch size, respectively, that are necessary for the nonnor-

maLity of the batch means and the dependence of the batch means to be

negligible. Establishing values for these quantities is difficult, but
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for our purposes they need not be actually determined. For simplicity

in the following analysis, we assume that k* batches are sufficient to

provide exact normality and independence and therefore exact 1-a Level

confidence intervals. This assumption of exact normality and indepen-

dence is relaxed at the end of Section 4.

The assumption that Rh decreases as h increases, made in Section 1,

implies that using fewer than k* batches will also result in normality

and independence. This is usually a valid assumption, but, for example,

Schrlber and Andrews [12] consider sequences of independent trivariate

normal observations for which the results of this paper do not hold,

since there m = 3 satisfies normality and independence exactly, but m =

4, 5, 7, 8, 10,... do not.

Consider the expected half Length resulting from k batches. E(Hk}

is inversely proportional to the square root of the sample size n when

observations are independent, and even for correlated observations a

quadrupling of the sample size will cut the expected half Length to

about one-half its original value. The same is not true for the number

I.of batches, k, when n remains constant. This is because SkV the stan-

dard deviation of the k batch means, is a function of k. Similar

' ]results are true of the variance of the half Length, V{Hk). Neverthe-

Less, changing k does affect these properties, as shown in Table 1.

Table I shows ECHkI and %/{kI for k = 2, 3, 4, 5, 6, 10, 30, 61,

121, and - and for a = .10, .05, and .01. The units are V 2)= calr ,

making the tables valid for all values of p, a2 and n. The correlation

structure between the batches is not a factor so Long as k < k*, since

then the batch means are independent and normally distributed. The as-



sociated t distribution quantiles are shown, as well as the dimension-

Less bias ratio r = E(Skl vIVCXJ, upon which the other quantities

depend. The values in Table 1 are derived in Appendix A. Note that the

values are deterministically calculated, rather than being the result of

Monte Carlo experiments.

Table 1 about here

As expected, E{Hk} decreases monotonically as k is increased for

all values of 0. The rate of decrease is much Larger for small values

of k than for Large values. In fact, the decreases in E{Hk)  associated

with increasing k from ten to infinity is only about twelve percent for

a=.05. The correct comparison is not between ten and infinity, however,

but between ten and k*, since more batches than k* do not result in

valid confidence intervals. The decrease in length is about ten percent

when k*=61 and about eight percent when k*=30.

Although the expected half length is robust for k > 10, the stan-

dard deviation exhibits a different pattern. While also decreasing as k

increases, and decreasing more rapidly for small values of k then for

Large values of k, /V{Hk} is affected more by k than is E(Hk} indicat-

: j ing that the stability of the confidence interval associated with Less

variance may be a reason to exert more effort to use many batches. How-

ever, again k should not be compared with the Limiting results at infin-

ity, but rather with k*. For *-.05 and kWO, the variance Is decreased

about 48 percent if k*=30 and about 65 percent if k*=61. Thus the major

benefit of using more than ten batches may be more in reducing V(Hk)

than in reducing E{Hk.

--t* ~ ..
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3. PROBABILITIES OF COVERAGE

ALthough consideration of the moments of the half Length are intui-

tiveLy appealLing, a more comprehensive criterion is to compute the pro-

bability, 0(01), that the confidence interval covers U1, as a function

of 1, i.e., 0(i) = P(- Hk  .51 ul Y + Hk)" When u1 = u this is the

commonly considered probability of coverage of the mean, analogous to

one minus the probability of type I error when testing hypotheses. When

U1 0 U this probability is analogous to the type II error. The coverage

function is more comprehensive than the expected value and variance of

the half Length because the coverage function considers the performance

of and Sk together while the half Length is a function of Sk only. In

addition the coverage function is directly related to the final product

-- covering the mean of the process.

We are interested in calculating the probability, B( 1), of cover-

ing U1 as a function of u, o2, n, a and k when k < k*. Results for

a = .10, .05 and .01 are shown in Figures 1, 2, and 3, respectively.

Each figure is valid for all values of P, U1" , 2 and n by plotting the

probabilities of coverage as a function of 6k = Il-*l(n/(c02))1/2. The

derivation of the values, based on the noncentraL Student's t distribu-

tion, is given in Appendix B.

Figures 1, 2 and 3 about here

For k < k*, the following patterns emerge from Figures 1, 2,'and 3:

1. The probability of covering v (corresponding to 60) is (1-)

for k = 2, 3, ..., k*.

2. The decrease in 00 due to incrementing k by one decreases as

k increases.

Maoa
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3. The decrease in B(01) due to incrementing k by one decreases as

a increases.

4. The decrease in 0(u 1) due to incrementing k by one is small

when 6 < 1.

5. The decrease in 8( 1) due to incrementing k by one is indepen-

dent of n, other than that k* increases with n.

As with moments of the half Length of the intervals, it is impor-

tant here to distinguish between the effect of increasing the sample

size n and increasing the number of batches k. For an increase in the

number of observations n, there is a corresponding increase in 6 by a

factor of n1/2, and a corresponding decrease in the probability of cov-

ering any point Pl other than ul=i. The effect of increasing the number

of batches k is much less. For exampLe, when a=.05 and k=10 tripling 6

from 6=1 to 6=3 (i.e., increasing n by a factor of eight) reduces the

coverage from .87 to .23. However tripling the number of batches from

k=lO to k=30 reduces the coverage from .86 to .83 when 6=1 and from .23

to .18 when 6=3.

4. IMPLICATIONS

The results of Sections 2 and 3 quantify the effects of using too

few batches. Here we discuss the impLications these results have for

both practitioners and researchers interested in developing algorithms

to determine the number of batches to be used.

When running a simulation experiment, the practitioner faces two

constraints: (1) The run must be Long enough to provide the desired ac-

curacy and (2) the run must be long enough to calculate a valid confi-

dence interval. (For a reLated discussion, see Lavenberg and Sauer [5,

O
-I - .
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p. 555].) Now if the Latter constraint comes into play, then using a

small number of batches will allow the simulation run to be terminated

earlier than if more batches are demanded, while still resulting in a

confidence interval with correct coverage. The results of the Last two

sections can be used to determine the penalty for using a specific

(small) number of batches.

Probably a much more common situation is when the accuracy required

forces the run to be longer than the number of observations necessary to

establish a valid confidence interval. The results of Sections 2 and 3

show that there is seldom a need to use more than k=30 batches and that

k=10 batches contain almost all the information in the data regardless

of the number of observations n. Thus the practitioner should seldom

exert much effort to increase the number of batches when k>30, and hard-

ly ever when k>60.

The implication for researchers interested in constructing algo-

rithms for determining batch sizes is to place less emphasis on obtain-

ing very Large numbers of batches. Four batching algorithms have ap-

peared in the literature: Law and Carson [7], Mechanic and McKay (10),

Fishman [23, and Schriber and Andrews [12). We discuss the implications

of the results of Sections 2 and 3 on each.

Law and Carson require a minimum of k=40 batches. This research

shows that a minimum of k10 batches will be almost as effective and

result in shorter runs. The algorithm could be modified to try initial-

Ly for 40 batches, but before doubling n, k=20 batches could be checked.

If k=20, fails, then try kWO. If k=O batches fail, then double the

sample size n, keeping klO, since it appears that the first constraint

EEL.A
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above applies. Similar comments apply to Mechanic and McKay who use a

minimum of k=25 batches.

Fishman's algorithm requires k > 8, not because of considerations

concerning the interval, but because the test used to detect correlation

between the batch means fails for small values of k. This algorithm be-

gins with k=n and iteratively halves k. Samples of size n=2048, 4096,

8192 and 16384 are used for experimenting with the algorithm, and n:111,

716 is discussed as being necessary in not unreasonable situations. The

results of Sections 2 and 3 indicate the initial value of k could be

substantially smaller with almost no deterioration in the confidence in-

tervals.

Schriber and Andrews modify Fishman's algorithm by considering

every possible batch size yielding k > 8 and selecting the value of k

corresponding to the test statistic Least indicating correlation between

the batch means. Their algorithm could be modified to consider all pos-

sible batch numbers between eight and some value between thirty and six-

ty. Rather than selecting the number of batches with the test statistic

value closest to zero, the algorithm could be modified to consider the

advantages of larger values of k. For example, if k=8 is indicated, but

k=30 also easily passes the correlation test, then k=30 should be con-

sidered because of its better properties.

Another implication concerns calculating confidence intervals on

the mean based on the use of independent replications, for which nota-

tions similar to batch means may be defined. Let Ti denote the sample

average of the ith simulation run having m observations, i:1, 2, ..., k.
k

Then the point estimate of P resulting from the k runs is / = Xik
Si=1 1

*1
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n
n Xi/n. A confidence interval may be calculated based on and Ski=1 ".

exactly as with batch means. For a detailed comparison of replications

and batch means, see Law 163.

Since each replication has an associated overhead of initializing

the run and removing the initial transient effects, k=2 replications

have an advantage compared to using more replications. The m=n/2 obser-

vations per run give Y1 and 2 the best chance of being normally distri-

buted. Independence is guaranteed for all values of k by using dif-

ferent random number seeds. Therefore k=2 minimizes computation and has

the best chance of satisfying the assumptions necessary for obtaining

the desired level of coverage. However, the resulting confidence inter-

vals have a Larger expected half Length than when larger values of k are

used. Thus a trade off between initialization cost and information loss

must be made, just as with batch means.

The results of Sections 2 and 3 imply that every effort should be

made to use at least eight to ten replications, but that little gain

results from using many more than ten or twenty replications. Since in-

itial transients are often a major factor when using independent repli-

cations, our recommendation is to use more than ten batches only when

the cost of dealing with the initial transient effect is very small.

This is a very general recommendation, but hopefully the quantification

of effects in Sections 2 and 3 will be useful for practitioners when

making the tradeoff between few and many replications.

A final implication concerns the lack of knowledge about k*, the

number of batches for which nonnormality and dependence of the batch

means are negligible. In the analysis of Sections 2 and 3 we assumed

a.
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that k* batches were sufficient to provide normality and independence

exactly. Since in most simulations, some violation of the assumptions

occurs for all batch sizes, there is some advantage to using smaller

numbers of batches which is not reflected in the analysis. That advan-

tage is that the smaller number of batches will more closely satisfy

normality and independence, thereby yielding more exact coverage proba-

bilities for the mean.

5. COMPARING CONFIDENCE INTERVAL PROCEDURES

The analysis of coverage functions in Section 3 leads to a general

method for comparing confidence interval procedures. Just as two tests

of hypothesis can be compared by calculating operating characteristic

curves, procedures for calculating confidence intervals can be compared

by empirically estimating the coverage function for various values of a

and Pl" Before stating the empirical procedure explicitly, first con-

sider Figure 4, which summarizes the information in Figures 1, 2, and 3

for k10 and k=-. Contours of the coverage probability B are plotted as

functions of a and 6. (Recall that 6 and P differ only in Location and

scaling, so alternatively the 6 axis may be thought of a rescaLed P1

axis.) The solid curves corresponding to k = are all Lower than the

dashed curves corresponding to k=10, indicating that the Larger numbers

of batches are preferable, as Long as the normality and independence as-

sumptions hold. Also as Long as these two assumptions hoLd,*the contour

curves intersect the a axis at 1-B. This property corresponds to the

coverage function described by Schruben 1133, who suggests that confi-

dence interval procedures be compared by empirically determining the

probability of coverage of the mean as a function of u. Thus the

( i ...
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suggestion made here is to generalize Schruben's coverage function to be

a function of 1 as well as a.

The Monte Carlo estimation of the coverage function is straight-

forward. Let aj, j=l, 2, ..., J, denote the a values of interest, such

as .2, .1, .05, and .01. Let 6., A=1, 2, ..., L, denote the 0 values of

interest, say .7, .8, .9, and .95. Perform R replications. In replica-

tion i, calculate the J confidence intervals (vij, wij) using the pro-

cedure of interest, and store these values either explicitly or in 21

histograms. Then for j=l, 2, ..., J and U1, 2, ..., L; estimate vj,

such that P(V j. 3  jt W<) = 0,, where Vi and Wj are random variables

denoting the lower and upper bounds of the confidence interval. The

confidence contour corresponding to each 0 can be plotted using the

points (pj3, aj), j=l, 2, ..., J. Note that there are two values of

Up,' one less that p and one greater than P, as shown in Figure 5, but

that symmetry allows Figure 4 to show only the greater value.

The estimation of v involves the estimation of quantiles, which

is a bit more involved than the estimation of fractiLes. If the resuLts

are not to be plotted, the above procedure can be modified to simply in-

crement a counter c. for each replication that confidence interval j
ctg

covers U., where Pm, m=l, 2, ...' M, denote the values of uI of in-

terest. Then the estimator for Ojm , the probability of a (1-6j)100

confidence intervaL covering u /R.I-s

11111A F1
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APPENDIX A

We derive here the bias ratios r, the expected haLf Lengths ECHk),,

and the standard deviations of the haLf Lengths %V(Hk) needed for TabLe

1. When k < k*, the assumptions of independence and normaLity of the

batch means are satisfi ed. Then S k has a chi distribution with mean

E{Sk I. ak (2/(k-) 1/2 r(k/2) / r((k-1)/2), where a k is the standard de-

viation of the k batch means and r(e) denotes the gamma function. Also

when k < k*AF ak/v V M~. Since by definition r aECSk.4TU/VC

we have r = (2kI(k-1))1/2 M/2) / rC(k-1)/2), which is dimensionless.

The expected haLf Length is E{H k} = to2k Ek).M Fmth

definition of r, we have directly that E{N k) = o2 Irinuiso

The variance of the half Length is V(Hk E(142) - E201 Hk ~ kk
t2,.l E{S2)I k -Ct _/21 r /VCI)2 Recalling that E{S ) a

for all k < k* and taking the square root to obtain the standard devia-

tion yields V/VfHk)= to/2k-1 (1-r 2) 1/2 in units of % (fl.

:A2
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APPENDIX I

Figures 1, 2, and 3 show the probability of covering s1 as a func-

tion of M, n, k, 02. These probabiLities may be derived by noting that

the probabiLity of coverage P(IT-PI Idk) is equaL to

ak/,VFR ak /VT"Pl't 4/2,k_ 1  /0 < t a/1111

where ak is the standard deviation of the k batch means. For aLL k <

k * (T0/ okl/V/T) is a standard normaL random variabLe and the batch

means are independent. Therefore the entire center expression in (1)

folLows a noncentraL Student's t distribution with k-1 degrees of free-

doe and noncentraLity parameter 6k=(V-Ml)/(k/V'). Again since k < k*

akIVWE a iV(Z, yieLding 6k-( v- ul) /VV(D. Using the expression for

VMK in the introduction, we have *ku(w-I 1) (n /co 2 )) 11 2 . Since the

probabiLity of coverage is the same for both +4k, Figures 1, 2, and 3

are drawn using 1 Ski to save space. The required noncentral t values

may be found in Owen E113 1 .
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Figure 1. Comparison, by number of batches k, of the probability
of covering points 6AV{Xl from p when c=.lO.

Figure 2. Comparison, by number of batches k, of the probability
of covering points tSV{X} from v when %=.05.

Figure 3. Comparison, by number of batches k, of the probabilities
of covering points 6VV{X from U when a=.Ol.

Figure 4. Comparison of k=10 batches with the limiting case k-.

Figure 5. Cumulative distribution functions for the lower and

upper confidence interval bounds for k=10 independent
and normally distributed batch means, a=O.10.
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